Stable p- and n-type doping of few-layer graphene/graphite

نویسندگان

  • Xiuqing Meng
  • Sefaattin Tongay
  • Jun Kang
  • Zhanghui Chen
  • Fengmin Wu
  • Shu-Shen Li
  • Jian-Bai Xia
  • Jingbo Li
  • Junqiao Wu
چکیده

ZnMg and NbCl5 were intercalated in graphite and the presence of such molecules between the graphene sheets results in nand p-type doping, respectively. The doping effect is confirmed by Hall and Raman measurements and the intercalation process is monitored by scanning tunneling microscopy. After intercalation the carrier concentration increase almost an order of magnitude and reaches values as high as 10and 10 cm 3 for pand n-type doping, respectively. For higher intercalation times, the intercalated graphite turns back to be as ordered as pristine one as evidenced by the reduction in the D peak in Raman measurements. Intercalation compounds show remarkable stability allowing us to permanently tune the physical properties of few-layer graphite. Our study has provided a new route to produce stable and functional graphite intercalation compounds and the results can be applied to other graphitic structures such as few-layer graphene

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlled electrochemical intercalation, exfoliation and in situ nitrogen doping of graphite in nitrate-based protic ionic liquids.

Few-layer nitrogen-doped graphene has been prepared via fast and controlled electrochemical exfoliation of graphite in a protic ionic liquid ethylammonium nitrate. The method presents a potentially scalable approach for preparation of metal-free, N-doped graphene for use as electrocatalysts for oxygen reduction reactions.

متن کامل

Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling, and stability.

We use anhydrous ferric chloride (FeCl(3)) to intercalate graphite flakes consisting of 2-4 graphene layers and to dope graphene monolayers. The intercalant, staging, stability, and doping of the resulting intercalation compounds (ICs) are characterized by Raman scattering. The G peak of heavily doped monolayer graphene upshifts to ∼1627 cm(-1). The 2-4 layer ICs have similar upshifts, and a Lo...

متن کامل

Modification of electronic properties of graphene with self-assembled monolayers.

Integration of organic and inorganic electronic materials is one of the emerging approaches to achieve novel material functionalities. Here, we demonstrate a stable self-assembled monolayer of an alkylsilane grown at the surface of graphite and graphene. Detailed characterization of the system using scanning probe microscopy, X-ray photoelectron spectroscopy, and transport measurements reveals ...

متن کامل

Li absorption and intercalation in single layer graphene and few layer graphene by first principles.

We present an exhaustive first-principles investigation of Li absorption and intercalation in single layer graphene and few layer graphene, as compared to bulk graphite. For single layer graphene, the cluster expansion method is used to systemically search for the lowest energy ionic configuration as a function of absorbed Li content. It is predicted that there exists no Li arrangement that sta...

متن کامل

Preparation and characterization of Graphene/Nickel Oxide nanorods composite

Graphene-based nanocomposites are newly emerged materials with a wide range of applications such as in supercapacitors electrode. The high conductivity and ability for passing electric current, makes Graphene an appropriate new item to be used in cells. Electroactive transition metal oxides, owing fast reversible redox pairs, are used to store electrical charge. Furthermore, the Graphene/NiO na...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013